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Abstract

Several chemometric techniques were compared for their performance to determine the orthogonality and similarity between chromatographic
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ystems. Pearson’s correlation coefficient (r) based color maps earlier were used to indicate selectivity differences between systems. These maps, in
hich the systems were ranked according to decreasing or increasing dissimilarities observed in the weighted-average-linkage dendrogram, were
ow applied as reference method. A number of chemometric techniques were evaluated as potential alternative (visualization) methods for the
ame purpose. They include hierarchical clustering techniques (single, complete, unweighted-average-linkage, centroid and Ward’s method), the
ennard and Stone algorithm, auto-associative multivariate regression trees (AAMRT), and the generalized pairwise correlation method (GPCM)
ith McNemar’s statistical test. After all, the reference method remained our preferred technique to select orthogonal and identify similar systems.
2005 Elsevier B.V. All rights reserved.

eywords: Orthogonal chromatographic systems; Hierarchical clustering techniques; Correlation coefficients color map; Kennard and Stone algorithm; Auto-
ssociative multivariate regression trees; Generalized pairwise correlation method with McNemar’s test

. Introduction

The International Conference on Harmonisation of Tech-
ical Requirements for Registration of Pharmaceuticals for
uman Use (ICH) demands that all impurities in pharmaceu-

icals, exceeding a certain threshold, should be characterized
1], as they can cause undesired side effects. The Food and Drug
dministration (FDA) requires methods in which all compo-
ents are resolved. For instance, a separation method, usually
hromatographic, is necessary to separate, identify and quantify
ll impurities. The development of chromatographic methods
s laborious, costly and not evident. Therefore defining a stra-
egy to rapidly find initial separation conditions, which then
ccasionally can be used as a starting point for further method
evelopment, is very interesting [2–6].

∗ Corresponding author. Tel.: +32 2 477 47 34; fax: +32 2 477 47 35.
E-mail address: yvanvdh@vub.ac.be (Y.V. Heyden).

Orthogonal chromatographic systems have a strongly diffe-
ring selectivity, because retention is caused by different me-
chanisms or solute properties. Such systems are helpful tools
in developing methods to separate impurities from the active
substance and from each other in drugs with unknown impurity
profile. Therefore, orthogonal or dissimilar systems are desired
as potential starting points for method development [2–6]. In
our context, the term orthogonal or orthogonality is not used in
its strict mathematical sense [5]. In mathematics two parame-
ters are orthogonal when they are uncorrelated (r = 0), and they
are either orthogonal or not. In comprehensive two-dimensional
chromatography (LC × LC) two methods are called orthogo-
nal when the constituent dimensions operate independently and
synentropy across the dimensions is zero [7,8]. In our situation,
orthogonality was evaluated for various individual systems (i.e.
containing one column) that can be used as potential starting
points for classic method development. In our case, but also in
LC × LC studies, often a less strict definition for orthogona-
lity is applied. Orthogonal systems are then defined as systems
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“that differ significantly in chromatographic selectivity” [6].
This means that systems for which r between the retention data
is low are also considered or called orthogonal. It means too that,
e.g. when comparing pairs of systems, terms as more orthogo-
nal (or more dissimilar, or with more selectivity differences) and
rather orthogonal can be applied. For reasons of analogy with
previous publications [2–6] usually the term orthogonal, rather
than dissimilar is used.

To study orthogonality between systems, both classical silica-
based and more recently developed reversed-phase columns
(e.g. polar-endcapped silica-based, or zirconia-based stationary
phases) have been examined. Also the influence of the buffer
pH, the organic modifier type or the column temperature on the
selectivity was evaluated. Fourty-six systems were examined by
injecting a generic set of 68 drug substances. The compounds
chosen differ in structure (functional groups, various ring struc-
tures), molecular weight, pKa, log P and pharmacological class
[2,3].

The orthogonality/similarity between systems earlier was
determined applying visualization techniques [2,3,5]. Color
maps and weighted-average-linkage (weighted pair group
method using arithmetic averages or WPGMA) dendrograms
[9–12], both based on the correlation coefficients r between the
normalized retention times τ of the substances on the different
systems, were used. The parameter τ is defined as the difference
between the retention time and the dead time, divided by the dead
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the construction of the dendrograms was compared to that of
the correlation coefficient. Also other, ranking, techniques, i.e.
the Kennard and Stone algorithm [17–19], auto-associative mul-
tivariate regression trees (AAMRT) [13] and the generalized
pairwise correlation method (GPCM) with McNemar’s statisti-
cal test [14], were evaluated. The outcome of all techniques was
intended to rank the systems in the color map, and the obtained
ranking was then compared with that from the reference method
for its ability to select orthogonal and distinguish similar sys-
tems.

2. Experimental

2.1. Drugs and reagents

The 68 drug substances used and their stock-solution con-
centrations are listed in Table 1. The concentrations depended
on the UV absorbances at 254 nm. The solutions were prepared
in 1:1 (v/v) organic modifier/Milli-Q water. The organic modi-
fier used was either acetonitrile or methanol, both Hypersolv for
HPLC (BDH, Poole, England).

The mobile phase preparation for the first 38 chromato-
graphic systems (CS1-CS38; Table 2) was already described
elsewhere [2,3]. For the mobile phases of the remaining systems
(CS39-CS46; Table 2) either acetonitrile for HPLC (Acros, Geel,
Belgium) or methanol for LC (Merck, Darmstadt, Germany),
b
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ime, measured under gradient conditions. The r-color maps with
he systems ranked according to decreasing or increasing dis-
imilarities in the WPGMA-dendrogram showed to be easily
nd straightforwardly interpretable to select orthogonal as well
s groups of similar systems [3,5] for the studied data sets. It is
herefore used here as a reference method.

To select orthogonal systems, Put et al. [13] found that both
rom univariate regression trees and auto-associative multivari-
te regression trees (AAMRT) analogous orthogonal selections
s those generated with the reference method are obtained.
orlay-Frick et al. [14] applied the generalized pairwise correla-

ion method (GPCM) with different statistical tests (William’s t,
onditional Fisher’s, McNemar’s and χ2-tests). Several correla-
ion measures (Spearman’s-ρ and Kendall’s-τ besides Pearson’s
orrelation coefficient) were also considered. They moreover
efined an orthogonality ratio to rank the systems based on
heir orthogonality towards the rest. The GPCM with McNe-

ar’s test was found best performing to select orthogonal sys-
ems. All methods in [13,14] provide a ranking of the systems
ccording to orthogonality, which is not the case with our re-
erence method. However, the latter allows defining groups of
imilar systems, which is not the case with those applied in
13,14].

The aim of this study is to evaluate several chemometric tech-
iques as potential alternative (visualization) methods for the
eference. The performances of five hierarchical clustering tech-
iques, i.e. single, complete and unweighted-average-linkage
unweighted pair group method using arithmetic averages or
PGMA), the centroid and Ward’s methods [9–12,15,16] to
etermine a ranking for the color map, are compared to that
f the reference. The use of the Euclidean distance [9,15] in
oth pro analysi (GR quality), were used. Buffers were prepared
ith phosphoric acid solution min. 85% (Carlo Erba, Milan,

taly), disodium hydrogenium phosphate dihydrate, sodium
ihydrogenium phosphate monohydrate, and sodium hydroxide
ellets, all pro analysi (all from Merck).

.2. Chromatographic conditions

The chromatographic conditions in systems CS1–CS38 were
escribed earlier [2,3]. The other experiments were executed on
n HPLC-instrument consisting of a Model 5000 Liquid Chro-
atograph Pump (Varian, Palo Alto, California), a 20 �l loop, a
TO-10A column oven and an SPD-M10A diode array detector

both Shimadzu, Kyoto, Japan). The methods were created and
he data treated with the Class-M10A LC workstation software
Shimadzu). The column oven was kept at 40 ◦C.

For systems CS39–CS46, five stationary phases were applied:
a) Shodex RSpak DE-413, (150 mm × 4.6 mm i.d., 4 �m)
Showa Denko, Tokyo, Japan), a polymethacrylate-packed co-
umn, (b) Discovery RP-AmideC16 (100 mm × 4.6 mm i.d.,
�m) (Supelco, Bellefonte, PA), a high-purity hexadecyl-

ilica with a polar-embedded amide function bonded to
he silica surface with a propyl group, (c) Fluophase PFP,
100 mm × 4.6 mm i.d., 5 �m) (Thermo Hypersil Keystone,
heshire, UK), a high-purity, base-deactivated silica statio-
ary phase with perfluorophenyl bonding, (d) Platinum C18
00 Å Rocket, (53 mm × 7 mm i.d., 3 �m) (Alltech, Deer-
eld, IL), a base-deactivated octadecylsilica, (e) Fluophase RP,
100 mm × 4.6 mm i.d., 5 �m) (Thermo Hypersil Keystone),

high-purity, base-deactivated silica stationary phase with
traight-chain perfluorohexyl bonding. Because the set of sub-
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Table 1
The 68 substances, their stock-solution concentrations and distributors

Substance (concentration in
mg/ml)

Distributed by

(±)-Camphor (5) Sigma–Aldrich (Steinheim,
Germany)

1,1-Dimethylbiguanide
hydrochloride (1)

Sigma–Aldrich (Steinheim,
Germany)

4-Benzylphenol (1) Aldrich (Milwaukee, WI)
5-Hydroxytryptamine

hydrochloride (0.5)
Sigma–Aldrich (Steinheim,
Germany)

5-Sulfosalicylic acid
dihydrate (2)

Merck (Darmstadt, Germany)

Acebutolol hydrochloride (1) Sigma (St. Louis, Missouri)
Amiodarone hydrochloride

(5)
Clin-Midy groupe Sanofi
(Montpellier, France)

Antazoline hydrochloride (1) Sigma–Aldrich (Steinheim,
Germany)

Betaxolol hydrochloride (1) Synthelabo (Paris, France) (gift)
Bupranolol hydrochloride (1) Schwarz Pharma (Monheim,

Germany)
Caffeine (1) Fluka (Neu-Ulm, Switzerland)
Carbamazepine (1) Sigma–Aldrich (Steinheim,

Germany)
Celiprolol (1) Rhône-Poulenc-Rorer (Madrid,

Spain) (gift)
Chloropyramine

hydrochloride (1)
Sigma–Aldrich (Steinheim,
Germany)

Cimetidine (10) Penn Chemicals (Pennsylvania, PA)
(gift)

Cirazoline hydrochloride
(0.4)

Research Biochemicals International
(Natick, MA)

Cocaine hydrochloride (1) Bios Coutelier (Brussels, Belgium)
Codeine base (1) Bios Coutelier (Brussels, Belgium)
Desipramine hydrochloride

(5)
Sigma–Aldrich (Steinheim,
Germany)

Diclofenac sodium (5) Sigma–Aldrich (Steinheim,
Germany)

Digitoxigenine (0.5) Fluka (Neu-Ulm, Switzerland)
Digitoxine (1) Mann Research Laboratories (New

York, NY)
Dimetindene maleate (1) Novartis (Basel, Switzerland) (gift)
Diphenhydramine

hydrochloride (5)
Sigma–Aldrich (Steinheim,
Germany)

Dopamine hydrochloride (2) Sigma–Aldrich (Steinheim,
Germany)

Efedrine hydrochloride (2) Vel (Leuven, Belgium)
Famotidine (2) Sigma–Aldrich (Steinheim,

Germany)
Fenfluramine hydrochloride

(1)
Technologie Servier (Orleans,
France)

Fluphenazine dihydrochloride
(USP grade) (2)

Sigma–Aldrich (Steinheim,
Germany)

Flurazepam (1) Dolorgiet Arzneimittel (Bonn,
Germany)

Histamine dihydrochloride
(1)

Sigma–Aldrich (Steinheim,
Germany)

Ibuprofen (5) Sigma–Aldrich (Steinheim,
Germany)

Isothipendyl hydrochloride
(1)

Novartis Pharma (Wehr, Austria)
(gift)

Ketotifen fumarate (1) Sigma–Aldrich (Steinheim,
Germany)

l-(+)-ascorbic acid (1) Merck (Darmstadt, Germany)
Lidocaine hydrochloride (1) Bios Coutelier (Brussels, Belgium)
Lorazepam (1) MSD (Haarlem, The Netherlands)
Miconazol nitrate (1) Certa (Braine-l’Alleud, Belgium)

Table 1 (Continued )

Substance (concentration in
mg/ml)

Distributed by

Morphine hydrochloride (2) Bios Coutelier (Brussels, Belgium)
Nadolol (1) Sigma–Aldrich (Steinheim,

Germany)
Naphazoline hydrochloride

(2)
Sigma–Aldrich (Steinheim,
Germany)

Nicardipine hydrochloride (1) UCB (Leuven, Belgium)
Nizatidine (2) Norgine (Marburg, Germany) (gift)
Oxeladin citrate (2) Sigma–Aldrich (Steinheim,

Germany)
Oxprenolol hydrochloride

(0.5)
Sigma–Aldrich (Steinheim,
Germany)

Pentoxifylline (1) Sigma–Aldrich (Steinheim,
Germany)

Phenol (1) Merck (Darmstadt, Germany)
Pindolol (1) Sigma–Aldrich (Steinheim,

Germany)
Pizotifen (5) Novartis Pharma (Wehr, Austria)

(gift)
Prazosin hydrochloride (1) Sigma–Aldrich (Steinheim,

Germany)
Prenalterol hydrochloride (1) Ciba-Geigy (Basel, Switzerland)
Procaine hydrochloride (1) Merck (Darmstadt, Germany)
Promethazine hydrochloride

(1)
Sigma–Aldrich (Steinheim,
Germany)

Propiomazine maleate (1) Sanofi (Paris, France) (gift)
Pyrilamine maleate (1) Sigma–Aldrich (Steinheim,

Germany)
Ranitidine hydrochloride (2) Sigma (St. Louis, Missouri)
Resorcine (1) Merck (Darmstadt, Germany)
Sotalol (1) Merck (Darmstadt, Germany)
Strychnine base (1) Bios Coutelier (Brussels, Belgium)
Sulfapyridine (1) Bios Coutelier (Brussels, Belgium)
Terazosin hydrochloride (1) Sigma–Aldrich (Steinheim,

Germany)
Terbutaline sulphate (1) Astra Draco (Lund, Sweden)
Tetrahydrozolin

hydrochloride (4)
U.S.P.C. (Rockville, MD)

Thiothixene (USP grade) (2) Sigma–Aldrich (Steinheim,
Germany)

Timolol maleate (1) Sigma–Aldrich (Steinheim,
Germany)

Tolazoline hydrochloride (5) Sigma–Aldrich (Steinheim,
Germany)

�-Lobeline hydrochloride
(1.5)

Carl Roth (Karlsrhue, Germany)

�-Estradiol (0.5) Sigma–Aldrich (Steinheim,
Germany)

stances is diverse, gradient elution was used to limit analysis
time. The gradients applied are summarized in Table 2.

The buffer pH was measured on a daily-calibrated Orion
520A (Orion Research, Boston, MA) pH-meter, and the buffers
were filtered through a 0.2 �m membrane filter (Schleicher &
Schuell, Dassel, Germany). The substances were injected as 20
mixtures containing three or four components, the composition
of which is described in [3]. In all buffers, stock solutions and
samples, Milli-Q water (Millipore Purification System, Mols-
heim, France) was used.

For all substances on each system, the normalized retention
time τ was calculated. On all systems, the normalized retention
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Table 2
Description of the chromatographic systems (CS)

CS Stationary phase Mobile phase conditions and column temperature

1 Chromolith Performance Methanol/0.08 M sodium phosphate buffer pH 3.0 from 10:90 to 75:25% (v/v) in 4 min; flow rate 2.0 ml/min; 40 ◦C
2 Chromolith Performance Methanol/0.08 M sodium phosphate buffer pH 6.8 from 10:90 to 75:25% (v/v) in 3 min; flow rate 2.0 ml/min; 40 ◦C
3 Zorbax Extend-C18 Methanol/0.08 M sodium borate buffer pH 10.0 from 10:90 to 75:25% (v/v) in 6 min; flow rate 1.0 ml/min; 40 ◦C
4 ZirChrom-PS Methanol/0.08 M sodium phosphate buffer pH 3.0 from 10:90 to 70:30% (v/v) in 6 min; flow rate 1.5 ml/min; 40 ◦C
5 ZirChrom-PS Methanol/0.08 M sodium phosphate buffer pH 6.8 from 10:90 to 70:30% (v/v) in 4 min; flow rate 1.5 ml/min; 40 ◦C
6 ZirChrom-PS Methanol/0.08 M sodium borate buffer pH 10.0 from 10:90 to 70:30% (v/v) in 4 min; flow rate 1.5 ml/min; 40 ◦C
7 ZirChrom-PS Methanol/0.08 M sodium borate buffer pH 10.0 from 10:90 to 70:30% (v/v) in 4 min; flow rate 1.2 ml/min; 75 ◦C
8 ZirChrom-PS Acetonitrile/0.04 M sodium phosphate buffer pH 3.0 from 10:90 to 70:30% (v/v) in 8 min; flow rate 1.0 ml/min; 40 ◦C
9 ZirChrom-PS Acetonitrile/0.04 M sodium phosphate buffer pH 6.8 from 10:90 to 70:30% (v/v) in 8 min; flow rate 1.0 ml/min; 40 ◦C

10 Platinum C18 Acetonitrile/0.04 M sodium phosphate buffer pH 3.0 from 10:90 to 70:30% (v/v) in 5 min; flow rate 3.0 ml/min; 40 ◦C
11 Platinum EPS C18 Acetonitrile/0.04 M sodium phosphate buffer pH 3.0 from 10:90 to 70:30% (v/v) in 5 min; flow rate 3.0 ml/min; 40 ◦C
12 Zorbax Eclipse XDB-C8 Methanol/0.04 M sodium phosphate buffer pH 3.0 from 10:90 to 70:30% (v/v) in 8 min; flow rate 1.0 ml/min; 40 ◦C
13 Zorbax Eclipse XDB-C8 Methanol/0.04 M sodium phosphate buffer pH 6.8 from 10:90 to 70:30% (v/v) in 8 min; flow rate 1.0 ml/min; 40 ◦C
14 Zorbax Eclipse XDB-C8 Acetonitrile/0.04 M sodium phosphate buffer pH 3.0 from 10:90 to 70:30% (v/v) in 8 min; flow rate 1.0 ml/min; 40 ◦C
15 Zorbax Eclipse XDB-C8 Acetonitrile/0.04 M sodium phosphate buffer pH 6.8 from 10:90 to 70:30% (v/v) in 8 min; flow rate 1.0 ml/min; 40 ◦C
16 Betasil Phenyl Hexyl Methanol/0.04 M sodium phosphate buffer pH 3.0 from 10:90 to 70:30% (v/v) in 8 min; flow rate 1.0 ml/min; 40 ◦C
17 Betasil Phenyl Hexyl Methanol/0.04M sodium phosphate buffer pH 6.8 from 10:90 to 70:30% (v/v) in 8 min; flow rate 1.0 ml/min; 40 ◦C
18 Betasil Phenyl Hexyl Acetonitrile/0.04 M sodium phosphate buffer pH 3.0 from 10:90 to 70:30% (v/v) in 8 min; flow rate 1.0 ml/min; 40 ◦C
19 Betasil Phenyl Hexyl Acetonitrile/0.04M sodium phosphate buffer pH 6.8 from 10:90 to 70:30% (v/v) in 8 min; flow rate 1.0 ml/min; 40 ◦C
20 Suplex pKb-100 Methanol/Britton-Robinson buffer pH 2.5 from 30:70 to 75:25% (v/v) in 20 min; flow rate 1.0 ml/min; 40 ◦C
21 Suplex pKb-100 Methanol/Britton-Robinson buffer pH 7.5 from 30:70 to 70:30% (v/v) in 10 min; flow rate 2.0 ml/min; 40 ◦C
22 ZirChrom-PBD Methanol/Britton-Robinson buffer pH 2.5 from 30:70 to 75:25% (v/v) in 20 min; flow rate 1.0 ml/min; 40 ◦C
23 ZirChrom-PBD Methanol/Britton-Robinson buffer pH 7.5 from 30:70 to 70:30% (v/v) in 20 min; flow rate 1.0 ml/min; 40 ◦C
24 ZirChrom-PBD Methanol/0.016 M borate buffer pH 10.0 from 30:70 to 75:25% (v/v) in 8 min; flow rate 1.5 ml/min; 40 ◦C
25 Chromolith Performance Acetonitrile/0.08 M sodium phosphate buffer pH 3.0 from 10:90 to 60:40% (v/v) in 6 min; flow rate 2.0 ml/min; 40 ◦C
26 Chromolith Performance Acetonitrile/0.08 M sodium phosphate buffer pH 7.5 from 10:90 to 60:40% (v/v) in 6 min; flow rate 2.0 ml/min; 40 ◦C
27 Aqua Acetonitrile/0.04 M sodium phosphate buffer pH 3.0 from 10:90 to 70:30% (v/v) in 8 min; flow rate 1.0 ml/min; 40 ◦C
28 Aqua Acetonitrile/0.04 M sodium phosphate buffer pH 6.8 from 10:90 to 75:25% (v/v) in 4 min; flow rate 2.0 ml/min; 40 ◦C
29 Suplex pKb-100 Acetonitrile/0.04 M sodium phosphate buffer pH 3.0 from 10:90 to 70:30% (v/v) in 8 min; flow rate 1.0 ml/min; 40 ◦C
30 Suplex pKb-100 Acetonitrile/0.04 M sodium phosphate buffer pH 6.8 from 10:90 to 70:30% (v/v) in 8 min; flow rate 1.0 ml/min; 40 ◦C
31 PLRP-S Acetonitrile/0.04 M sodium phosphate buffer pH 3.0 from 10:90 to 70:30% (v/v) in 8 min; flow rate 1.0 ml/min; 40 ◦C
32 PLRP-S Acetonitrile/0.04 M sodium phosphate buffer pH 6.8 from 10:90 to 70:30% (v/v) in 8 min; flow rate 1.0 ml/min; 40 ◦C
33 Luna CN Acetonitrile/0.04 M sodium phosphate buffer pH 3.0 from 10:90 to 70:30% (v/v) in 8 min; flow rate 1.0 ml/min; 40 ◦C
34 Luna CN Acetonitrile/0.08 M sodium phosphate buffer pH 5.0 from 10:90 to 70:30% (v/v) in 8 min; flow rate 1.0 ml/min; 40 ◦C
35 ZirChrom-PBD Acetonitrile/0.04 M sodium phosphate buffer pH 3.0 from 10:90 to 70:30% (v/v) in 5 min; flow rate 2.0 ml/min; 75 ◦C
36 ZirChrom-PBD Acetonitrile/0.04 M sodium phosphate buffer pH 6.8 from 10:90 to 70:30% (v/v) in 5 min; flow rate 2.0 ml/min; 75 ◦C
37 Zorbax Extend-C18 Acetonitrile/0.04 M sodium phosphate buffer pH 3.0 from 10:90 to 70:30% (v/v) in 8 min; flow rate 1.0 ml/min; 40 ◦C
38 Zorbax Extend-C18 Acetonitrile/0.04 M sodium phosphate buffer pH 6.8 from 10:90 to 70:30% (v/v) in 8 min; flow rate 1.0 ml/min; 40 ◦C
39 Shodex RSpak DE-413 Acetonitrile/0.04 M sodium phosphate buffer pH 3.0 from 10:90 to 70:30% (v/v) in 5 min; flow rate 1.5 ml/min; 40 ◦C
40 Shodex RSpak DE-413 Acetonitrile/0.04 M sodium phosphate buffer pH 6.8 from 10:90 to 70:30% (v/v) in 5 min; flow rate 1.5 ml/min; 40 ◦C
41 Shodex RSpak DE-413 Methanol/0.04 M sodium phosphate buffer pH 3.0 from 10:90 to 70:30% (v/v) in 5 min; flow rate 1.2 ml/min; 40 ◦C
42 Discovery RP-AmideC16 Acetonitrile/0.04 M sodium phosphate buffer pH 6.8 from 10:90 to 70:30% (v/v) in 5 min; flow rate 1.5 ml/min; 40 ◦C
43 Fluophase PFP Acetonitrile/0.04 M sodium phosphate buffer pH 3.0 from 10:90 to 70:30% (v/v) in 5 min; flow rate 2.5 ml/min; 40 ◦C
44 Platinum C18 Acetonitrile/0.04 M sodium phosphate buffer pH 6.8 from 10:90 to 70:30% (v/v) in 4 min; flow rate 2.5 ml/min; 40 ◦C
45 Discovery RP-AmideC16 Acetonitrile/0.04 M sodium phosphate buffer pH 3.0 from 10:90 to 70:30% (v/v) in 5 min; flow rate 1.5 ml/min; 40 ◦C
46 Fluophase RP Methanol/0.04 M sodium phosphate buffer pH 3.0 from 10:90 to 80:20% (v/v) in 5 min; flow rate 1.5 ml/min; 40 ◦C

time measurement was preceded by a search for optimal peak
form by adaptation of the gradient, the flow rate and/or the buffer
concentration.

3. Results and discussion

In Refs. [2,3], the orthogonality and similarity between chro-
matographic systems was determined from interpreting Pear-
son’s correlation coefficients between the normalized retention
times τ of the 68 substances. In [2], where only 11 systems
were considered, the relationships were deduced from a direct
interpretation of the correlation coefficients matrix. Additionally

several visualization methods, i.e. principal component analysis
(PCA) [17], the density-based cluster technique ordering points
to investigate the clustering structure (OPTICS) [20,21] and
weighted-average-linkage clustering, were performed to faci-
litate the selection of similar and dissimilar systems. PCA and
OPTICS did not allow defining orthogonal nor similar ones. The
WPGMA-dendrogram on the other hand grouped the similar and
separated the orthogonal systems [2,3].

For a data set of 38 systems, the correlation matrix was trans-
formed into a color map to visually evaluate the relationships [3].
This map is obtained by replacing each correlation coefficient
by a color. The systems were ranked according to increasing or
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decreasing dissimilarities in the dendrogram, resulting in a color
map that allowed defining orthogonal and groups of similar sys-
tems.

For the actually studied set of 46 systems, the color map based
on the above-mentioned procedure is shown in Fig. 1a. It is used
as a reference to evaluate the results of the other techniques
studied. The systems considered orthogonal from this approach
are given in Table 3.

Several chemometric methods were researched for their per-
formance to select orthogonal and groups of similar systems. A
color map was drawn, whenever possible, ranking the systems
according to the results obtained from these techniques, and the
selection was compared to that of the reference.

3.1. Hierarchical clustering techniques

The methods are called hierarchical because smaller clusters
are included in larger, or vice versa [9]. The result of such
classification is visualized as a dendrogram. When objects are
sequentially merged, the technique is called agglomerative;
when clusters are sequentially split until they all contain

F
i
a
g
c
t

Fig. 1. (Continued ).

single objects, it is called divisive [9–11,15]. Since the latter
methods are much less applied [9], only the agglomerative were
examined. These all are based on the same procedure, i.e. classi-
fication of m objects in m − 1 steps. In each consecutive step, the
two most similar objects (clusters) are merged [9]. The objects
(or clusters) to join are derived from the (dis)similarity matrix,
representing the (dis)similarities between each pair of objects
(clusters) [10]. Dissimilarities or dissimilarity coefficients are
nonnegative numbers that are small when objects or clusters
are closely related, and large if they are very different [11,22].
The two least dissimilar objects (or clusters) are merged, and
the dissimilarity matrix is recalculated for the new situation
[9].

The agglomerative techniques differ in the calculation of
the dissimilarities [11]. The weighted and unweighted-average-
ig. 1. Color map of Pearson’s correlation coefficients between the normal-
zed retention times τ of 68 substances on 46 systems, with the systems ranked
ccording to decreasing dissimilarities (1 − |r|) in the: (a) WPGMA, (b) sin-
le linkage, (c) complete linkage, and (d) UPGMA dendrograms. I–V, similar
lasses; VI, orthogonal systems; A–J, classes defined from techniques other than
he reference and not corresponding to I–VI.

linkage, single and complete linkage, the centroid and Ward’s
method were evaluated in this study. In the average linkage
technique, the dissimilarity between two clusters is defined as
the average of all dissimilarities calculated between any object
in both clusters [11]. Two variants exist, the weighted and
unweighted. The former, also called weighted pair group method
using arithmetic averages (WPGMA), considers every object
in the cluster equally important, i.e. every object weighs the
same. Clusters consisting of a larger number of objects carry a
larger weight. In the latter, the unweighted pair group method
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Table 3
Systems defined as orthogonal from the different methods

Reference method Single linkage Complete linkage UPGMA Kennard and Stone AAMRT GPCM

4 3 9 5 8 5 2
3 8 5 9 39 2 3
6 5 6 2 3 4 8
22 4 22 20 9 3 5
8 2 8 15 5 8 6
9 22 4 1 15 7 4
5 9 3 27 or 45 6 6 7
20 15 21 or 35 26 4 22 22
2 1 or 14 26 13 or 16 2 15 9
15 19 or 44 19 or 44 41 21 9 15
35 20 15 21 22 1 36
19 21 or 35 2 19 19 41 41
1 41 1 or 41 3 20 19 20
27 or 45 24 20 6 35 36 1
13 or 16 13 or 17 25 or 27 4 1 14
41 6 22 7 19

8 35

using arithmetic averages (UPGMA), every cluster weighs the
same [10,11], meaning the weight of every object in the clus-
ter is adjusted to keep the total weight of the cluster constant.
In single linkage, the dissimilarity between two clusters is the
minimum dissimilarity between the objects in the clusters; while
for complete linkage, the maximum dissimilarity is considered.
In the centroid method, clusters are merged based on the mini-
mal squared Euclidean distance between their centroids. Ward’s
method, also called the error sum of squares method, joins clus-
ters that give rise to a minimal increase in the total within-groups
error sum of squares.

For interval-scaled variables [11] such as the normalized
retention times, several possibilities to determine dissimilarity
exist. Earlier, 1 − |r| was used as dissimilarity criterion [2,3].
In this study, it is compared to the Euclidean distance [9,15]
for WPGMA, UPGMA, single and complete linkage, and to
the squared Euclidean metric [10] for the centroid and Ward’s
methods. In the dendrograms, the dissimilarity of the objects
(systems) is represented by the height at which the branches are
connected.

In the color maps drawn, the systems were ranked according
to decreasing dissimilarities in the trees. The results obtained
with the reference method are shown in Fig. 1a, the correspond-
ing dendrogram in Fig. 2a. Considering a dissimilarity of about
0.4 the same groups as in the color map are observed.

The groups of similar systems are denoted as I–V (with for IV
t
t
b
I
a
t
c
I
l
T
t

For single linkage clustering, the results are shown in
Figs. 1b and 2b. The r-color map was built, ranking the systems
according to decreasing dissimilarities in the tree. Several groups
can be noticed, with A–G containing similar (r ≥ 0.6), H and I
merging intermediately orthogonal (0.4 < r < 0.6), and J ortho-
gonal (r ≤ 0.4) systems. The groups are much less pronounced
and exclusive than in Fig. 1a. In the dendrogram, no dissimilarity
value allows discriminating the orthogonal and similar systems
as was the case above. This is a consequence of the dendro-
gram construction where objects are sequentially linked at a
higher dissimilarity level, i.e. nearest neighbours are considered.
The orthogonal set selection from the groups in the r-color map
(Fig. 1b) is given in Table 3. It can be concluded that single
linkage clustering results in building a color map in which the
orthogonal systems are grouped and can be selected, yet that
lacks in the clustering of similar ones. Hence, this technique
seems less suitable than the reference for these data.

For complete linkage clustering (Figs. 1c and 2c), the division
of the systems into groups is improved. When sorting them in the
r-color map according to decreasing dissimilarities in the den-
drogram, classes A–F can be distinguished. Classes A–E group
similar systems, while F classifies those orthogonal to the rest.
However, in Fig. 1c, group F is not completely clustered (e.g.
CS20) as was the case in Fig. 1a for group VI. The orthogonal
subset from Figs. 1c and 2c selected in analogy with the above
techniques is given in Table 3. The selection is largely similar
t
i
i
T
w

m
s
w
i
a

hree subgroups of more similar ones); the systems orthogonal
o the rest are in VI (Figs. 1a and 2a). An orthogonal set can
e selected taking every system in VI, and one from each group
–V, which results in 16 systems (Table 3). From the groups I–V,
system splitting in the dendrogram with group VI at (one of)

he highest dissimilarity values is selected. If two systems are
onnected equally high in the tree, e.g. CS6 and CS7 (group
), it is derived from the r-color map which of those has the
owest correlation coefficients relative to most other systems. In
able 3, the systems are ranked as they were selected according

o the above rules.
o that obtained applying WPGMA. Though the groups defined
n Fig. 1c can be retrieved in the dendrogram, they cannot be
solated using one dissimilarity value as was the case in Fig. 2a.
herefore, we consider the complete linkage clustering some-
hat less preferable for this data set.
For the UPGMA technique (Figs. 1d and 2d), from the r-color

ap built on decreasing dissimilarities in the dendrogram, the
ame groups as in Fig. 1a can be distinguished, except for II,
hich is split. Besides, the classes gathering the similar systems

n IV are separated. The orthogonal subset chosen by selecting
ll systems of the orthogonal group, which also is split in the
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Fig. 2. Dendrogram of 46 systems based on the 1 − |r| dissimilarity criterion, using: (a) WPGMA, (b) single linkage, (c) complete linkage, and (d) UPGMA. Abscissa:
system numbers and groups.

r-color map, and one with one of the highest individual dissimi-
larities from each similar class, is shown in Table 3. The selection
is largely analogous to that obtained using WPGMA. As for the
complete linkage, no dissimilarity value separating the groups of
similar and orthogonal systems could be selected neither. Thus,
the UPGMA technique also is considered somewhat less pre-
ferred for these data than WPGMA. From the above, it can be
stated that a preferred clustering method allows selecting a dis-
similarity value separating the dissimilar systems from groups
of similar, which facilitates the interpretation of both the tree
and the color map.

When applying the Euclidean distance as dissimilarity cri-
terion in the hierarchical clustering techniques, both the similar
and the orthogonal systems were classified differently, which
influenced the selection of the orthogonal subset. No method
delivered a dendrogram (and a dissimilarity level) that showed
straightforwardly orthogonal and similar relationships. Using
r-limits to categorize systems as orthogonal, intermediately
orthogonal or similar, those considered analogous were found

in different groups when using Ward’s method, UPGMA,
complete linkage and WPGMA. Application of the centroid
method even showed several reversals [9] of the dendrogram
branches, i.e. in successive linkages the dissimilarity drops
again, which complicated the interpretation. The single linkage
tree exhibited chaining tendency, as each consecutive node is
made at a successively higher dissimilarity, and emphasized
on systems that are not the most orthogonal, i.e. these systems
exhibited the highest dissimilarities. The color maps of all
methods showed dissimilar and analogous systems mixed up,
making the definition of groups impossible. As a consequence,
the use of the Euclidean distance was found a badly performing
dissimilarity criterion for this data set.

3.2. Kennard and Stone algorithm

The Kennard and Stone algorithm [17–19], a uniform
mapping algorithm, also was tested to select an orthogonal
subset of systems. The technique is based on the fact that
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Fig. 3. Color map of Pearson’s correlation coefficients between the normalized
retention times τ of the 68 substances on 46 systems, with the systems ranked
according to the Kennard and Stone algorithm, starting furthest from the mean,
using the autoscaled normalized retention times as selection criterion.

objects (systems) leading to different outcomes should not
occupy similar locations in the multidimensional space [17].
Accordingly, orthogonal systems should be chosen from
dissimilar places, thereby covering this space as uniformly as
possible. The algorithm is based on maximizing the minimal
(squared) Euclidean distance between each selected object
and all previously chosen. It can be executed starting from the
object that is situated either closest or furthest from the mean,
and each consecutively selected one is at maximal distance of
those already included [17]. As a consequence, the Kennard and
Stone algorithm might enable selecting an orthogonal subset. It
ranks the systems according to decreasing distances, and thus
allows choosing subsets with different size.

Fig. 3 shows the color map with the systems ranked according
to the selection obtained from the Kennard and Stone algorithm
performed on the autoscaled normalized retention times, starting
furthest from the mean (Table 3). From Fig. 3 and Table 3, it can
be seen that indeed the most dissimilar systems are ranked first.
Twelve out of the 16 selected correspond to that in the reference
method: i.e. all systems from VI, and half of the remaining. It
can be concluded that the Kennard and Stone algorithm, starting
furthest from the mean, executed on the autoscaled normalized
retention times, allows selecting the most orthogonal systems
for the studied data set.

3
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technique. In our approach the variables are applied both as
explanatory and as response variables. The data are divided
using consecutive binary splits, thus creating nodes that group
the objects exhibiting an analogous multivariate response
profile, i.e. in this case the substances that show similar
retention behaviours on the systems. The starting point in the
tree-building procedure is called the parent node; the subgroups
are denominated child nodes. A split is defined by a single
explanatory variable for which the best split value is selected.
The latter is defined as the value that minimizes the impurity
of the two child nodes, the goodness of a split as the impurity
decrease between the parent and resulting child nodes. The
splitting process is repeated considering each child node as a
parent node. The decision tree is grown so that the homogeneity
is maximized and the impurity is minimized within each node,
and splitting is continued until homogenisation of all child
nodes, i.e. a maximal tree, is obtained. The importance of an
explanatory variable to introduce a split is detected by the
variable ranking method [13]. The explanatory variable with
the largest impurity decrease is the most important and is given
an importance value of 1, while all other get a score on the
importance scale relative to that of the most important [13].

In terms of selecting an orthogonal set, it is supposed that
systems involved in the splits (i.e. with the highest importance)
allow describing the retention on several systems, whereas those
being least important to grow the tree can be looked upon as
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.3. Auto-associative multivariate regression trees
AAMRT)

The auto-associative multivariate regression trees (AAMRT)
echnique allowed for two sets of chromatographic systems,
sing the normalized retention times from the 68 substances,
very similar subset selection of orthogonal systems [13] as

hat found with the reference method. Therefore, this technique
as also applied here.
AAMRT [13,23] allows the simultaneous description of

everal responses in a decision tree. It is an unsupervised
ost orthogonal. In Fig. 4, the importance plot for all systems is
hown, and the most orthogonal ones, having the smallest impor-
ance, can be found to the right [13]. The importance slowly
ecreases and is relatively similar for the first 32 systems. For
he last 14 (starting with CS36 in Fig. 4), lower importance
alues are observed. Therefore, it could be suggested to select
hese 14 systems as orthogonal subset, the composition of which
s described in Table 3. Twelve of the 14 systems correspond
o those obtained with the reference method. The r-color map
ith the systems ranked according to increasing importance is

hown in Fig. 5. A gradual decrease in dissimilarity is observed,
nd the orthogonal systems can clearly be derived. From this
olor map, the same orthogonal subset would be selected as
rom Fig. 4. All systems obtained with the reference method
group VI in Figs. 1a and 2a), except CS20, are present in
he AAMRT selection, including also some from the similar
roups.

It can be concluded for the studied data that the AAMRT
echnique indeed could be useful to select an orthogonal subset.
he difference with the reference method is that AAMRT only

ocuses on the selection of the most orthogonal systems, while
roups of similar systems are not found.

.4. Generalized pairwise correlation method (GPCM)
ith McNemar’s statistical test

The generalized pairwise correlation method (GPCM) with
cNemar’s statistical test already demonstrated for a set of 38

ystems examined with the 68 substances to result in an analo-
ous orthogonal subset selection as the reference method [14].
herefore, this technique also was evaluated here.
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Fig. 4. Importance plot for the explanatory variables (46 chromatographic systems) in the AAMRT.

GPCM [24–26], a non-parametric technique, takes into
account the pairwise relations between the systems. A number
of superiority is determined comparing all possible independent
variable pairs, and is defined as the number of wins, i.e. the
number of times the considered independent variable was found
superior. Analogously, a number of inferiority, i.e. of losses, can
be determined. Each system was once considered as dependent
variable (supervisor) and the remaining 45 were then ranked with
GPCM. The superiority was calculated using the non-parametric
statistical McNemar’s test [17,27], and the ranking of the sys-
tems was based on the number of wins minus the number of
losses. This approach leads to 46 rankings.

To construct a color map based on the results of this approach
(Fig. 6), several actions had to be taken. The color map (n × m)
is asymmetrical (contrary to previous maps) and contains the
reference systems (supervisors) in the n direction, and the

F
r
a

results relative to those in the m direction. The asymmetry can
be explained from the fact that elements xij and xji are obtained
using different systems as reference. The systems in the color
map are considered orthogonal when the number of wins minus
the number of losses is beneath or equal to −19. This value
is the consequence of two measures: (a) in real-life situations,
orthogonality with r = 0 is rare [5,6]. Stated that also statistically
non-significant correlation between systems can be considered
as orthogonality, a limit value of correlation is defined below
which a non-zero value can be considered originating from
orthogonal systems. It amounts 0.291 at the 5% significance
level for n = 46. The threshold was derived from the linear cor-
relation coefficients table of Bevington [28]. This implies that
pairs of systems for which the correlation coefficient is lower
than 0.291 are considered orthogonal; (b) for 46 systems, the dif-
ference between number of wins and number of losses can range
from −45 to +45, i.e. 90 possibilities. Combining measures (a)
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ig. 5. Color map of Pearson’s correlation coefficients between the normalized
etention times τ of the 68 substances on 46 systems, with the systems ranked
ccording to their importance in the AAMRT method (Fig. 4).
ig. 6. Color map based on the number of wins minus the number of losses
btained using the GPCM method with McNemar’s test as selection cri-
erion; systems ranked according to decreasing orthogonality ratios. O, I,
= orthogonal, intermediately orthogonal and similar systems, respectively.
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and (b) leads to the definition of −19 (=−45 + 0.291 × 90) as
the threshold below which systems are considered orthogonal.
When acting as supervisor, a system does not obtain a number.
Since no system can be more equal than to itself, it is arbitrarily
given the highest number, i.e. above 45, and 50 was applied.

Another criterion to express the orthogonality between sys-
tems is the orthogonality ratio (OR) [14]. To calculate this ratio
for a given system, the values below or equal to −19 were
replaced by −1, and those above by +1 (referring to ortho-
gonality and similarity, respectively). Then, the number of −1
occurrences was calculated for each system, and its orthogona-
lity ratio was obtained dividing this number by 45 (=46 − 1), and
multiplying with 100%. The systems in the color map of Fig. 6
were ranked based on decreasing orthogonality ratios. High
ratios refer to systems exhibiting orthogonality to most other
systems, while low values indicate similarity to most (Table 4).
These OR-values allow selecting an orthogonal subset (Table 3).

Comparing the selection to that of the reference method
(Table 3), it can be concluded that the orthogonal subset formed
with the first nine systems, i.e. those having orthogonality ratios
of ≥60% in Table 4, contains all of group VI of Fig. 1a, except for
CS15 and 20. In case also the following eight systems, exhibiting
OR-values between 30 and 60% (Table 4) are included, CS15
and CS20 are selected as well as some of the other systems
appearing in the reference method selection. The latter originate
from the similar groups (II–V). Fourteen of the 17 systems thus
a
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4. Conclusions

The applied reference method to select an orthogonal sub-
set, i.e. WPGMA with dissimilarity criterion 1 − |r|, and the
resulting r-color map with the systems ranked according to
decreasing dissimilarities in the dendrogram, remains our pre-
ferred approach for selecting orthogonal and similar systems.
Both the tree and the color map indicate the orthogonal and
groups of similar systems. It was possible to define a uniform
dissimilarity level in the dendrogram, allowing a distinction
between the same groups as observed in the color map. Within a
group of similar systems that with the highest individual dissim-
ilarity in general also has the lowest correlation coefficient with
the other systems, i.e. is most orthogonal. All other hierarchi-
cal clustering methods were found somewhat less good for one
or more of these criteria. The results of the UPGMA technique
correspond best with the conclusions of the reference method.

The three ranking techniques, i.e. the Kennard and Stone
algorithm, AAMRT and the GPCM method with McNemar’s
test allowed selecting the most orthogonal systems. These
techniques, which focus most on orthogonal system selection,
resulted in a quite similar subset. Their disadvantage is that
groups of similar systems are not considered. Therefore the con-
struction of a color map for these methods is less relevant.
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lso appeared in the selection of the reference method.
To conclude, it can be stated that the GPCM method apply-

ng McNemar’s statistical test and the related OR-values give a
omparable orthogonal subset selection as the reference for the
tudied data. Using the orthogonality ratio as a criterion to select
ystems makes the color map less important. This is because the
anking method provides an ordering of the systems from most
rthogonal to most similar. However, as in the Kennard and
tone or the AAMRT approach, no similar systems are derived.

able 4
rthogonality ratios (OR) with the 46 systems

S OR

2 91.1
3 91.1
8 91.1
5 88.9
6 88.9
4 86.7
7 84.4
2 80.0
9 68.9
5 57.8
6 53.3
1 51.1
0 44.4
1 33.3
4 33.3
9 31.1
5 31.1

rthogonal (≥60%) and intermediately orthogonal (30–60%) systems. Interme-
iately orthogonal values are given in italics.
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